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Abstract. In this paper we consider A-calculi of explicit substitutions
that admit open expressions, i.e. expressions with meta-variables. In par-
ticular, we propose a variant of the Ao-calculus that we call Az. For this
calculus and its simply-typed version, we study its meta-theoretical prop-
erties. The Az-calculus enjoys the same general characteristics as Ao, i.e.
a simple and finitary first-order presentation, confluent on expressions
with meta-variables of terms and weakly normalizing on typed expres-
sions. Moreover, Az does not have the non-left-linear surjective pairing
rule of Ao which raises technical problems in some frameworks.

1 Introduction

There are several versions of A-calculi of explicit substitutions (see, among others,
[1,20, 14, 2, 21, 3,17, 25, 6]). All these calculi implement S-reductions by means
of a lazy mechanism of reduction of substitutions.

In typed A-calculi, the explicit substitutions have been proposed as a frame-
work for higher-order unification [4, 5, 19], or for representation of incomplete
proofs [22, 26]. In these approaches, terms with holes are represented by open
terms, i.e. terms with meta-variables.

In order to consider open terms, most of the calculi of explicit substitutions
have a strong drawback: non-confluence on terms with meta-variables. Conflu-
ence and weak normalization are sufficient to decide equivalence of terms. Hence,
these two properties seem to be desirable in any extension of A-calculi of explicit
substitutions with meta-variables.

The Ao-calculus! is one of the most popular calculus of explicit substitutions.
It is a first-order rewrite system with two sorts of expressions: terms and substi-
tutions. In this calculus, free and bound variables are represented by de Bruijn’s
indices, and hence, A-terms correspond to ground Ao-terms without substitu-
tions. The Ao-calculus is not confluent on general open terms [3]. However, it is
confluent if we consider expressions with meta-variables of terms but no meta-
variables of substitutions [32]. These expressions are usually called semi-open
expressions.

Compared with other confluent calculi on semi-open expressions (e.g. Ay [3],
As, [14] or A¢ [25]), the Ao-calculus is a finitary first-order system (As, is not),

! In this paper we use Ao to designate the locally confluent calculus proposed in [1].



it allows composition and simultaneous substitutions (A does not), and it is
compatible with the extensional n-rule (Ay is not).

The composition operator was introduced in Ao to solve a critical pair, and
S0, to gain local confluence. Composition of substitutions introduces simultane-
ous substitutions that happens to be useful for several purposes. For example,
the modeling of closures of an abstract machine [12] or the pruning of search
space in unification algorithms [4, 5, 19]. Also, this feature improves the substi-
tution mechanism by allowing parallel substitutions of variables. An interesting
discussion about composition of substitutions in A-calculus can be found in [29].

However, composition of substitutions and simultaneous substitutions are

respousible of the following non-left-linear rule in Ao: 1[S]- (T 0 S) M S.
Informally, if we interpret S as a list, 1 as the head function and T as the tail
function, then this rule corresponds to the surjective-pairing rule. The (SCons)-
rule is impractical for many reasons. We have shown in [27] that Ao may loses
the subject reduction property in a dependent type system due to (SCous).
But also, independently, Nadathur [30] has remarked that this non-left-linear
rule is difficult to handle in implementations. In fact, he shows that (SCons) is

admissible in Ao when we consider semi-open terms and the following scheme of
n-times

SC —
rule: 1[17] - 17t ﬂ» 1™, where 1™ is a notation for To...oT.

Following this idea, we propose a calculus of explicit substitutions that enjoys
the same general features as Ao, i.e. a simple and finitary first-order presentation,
confluent on expressions with meta-variables of terms and weakly normalizing
on typed terms. But, in contrast to Ao, the new calculus does not have the
(SCouns)-rule which raises technical problems in some frameworks.

The rest of the paper is organized as follows. In Section 2 we present the
Acz-calculus. The confluence property of A, is show in Section 3. In Section
4 we study the simply-typed version of A-. In Section 5 we prove that A is
weakly normalizing on typed expressions. Last section summarizes the main
contributions of this work.

2 A-Calculus

The finitary presentation of the scheme suggested by Nadathur is gained by the
introduction of a sort to represent natural numbers and with an adequate set of
rewrite rules to compute with them.

Well formed expressions in Az are defined by the following grammar:?

Naturals n = 0] Suc(n)
Terms M,N == 1| AM | (M N)| M[5]
Substitutions S, == 1" | M -S| SoT

% In previous manuscripts ([28, 27]) the name of the calculus was A4, but we have
changed to Az in order to avoid confusion with the A¢-calculus proposed by Lescanne
in [20].



The A-calculus is given by the rewrite system in Fig. 1.

(AMN) — MIN-1°] (Beta)
(AM)[S] — AM[L-(S017"®)] (Lambda)
(M N)[S] — M]IS] N[S] (App)
MIS]|[T] — M[SoT] (Clos)

1[M - 8] - M (VarCons)
(M-S)oT — MI[T)-(SoT) (Map)
%08 — S (1dS)
15w o (M- 8) — "0S (ShiftCons)
TSuc(n) ° Tm N T" o TSuc(m) (Shlftshlft)
1. Sue© — 10 (Shift0)
1[Tn] . TSuC(n) N T"’ (Shlfts)

Fig. 1. The rewrite system Az

A first remark is that A gathers, in its syntax, some notations that are
frequently used to speak informally of Ao. For example, the substitutions ¢d and

n+1
To...01 of Ao, correspond respectively to 1° and 19¢(™) in A. In the same
way, the de Bruijn’s indices 1 and n + 1 are represented respectively by 1 and
1[1"] in Az. Thus, the scheme of rule suggested by Nadathur can be written as
a first-order (and finitary) rule.

The sub-system L is obtained by dropping (Beta) from A..

Proposition 1. £ is terminating.

Proof. In [36] this property has been proved by using the semantic labelling
method (cf. [35]). An alternative proof is proposed in [28]. |

The rewrite system £ is not confluent, not even locally confluent, on open
expressions. We can check mechanically, for example using the RRL system [16],
that £ has the following critical pairs:

— (Id-Clos). M[S] < 1.

~ (Clos-Clos). M[(SoT)oT'] <~ M[S|[T|[T"] =~ M[So(ToT").

~ (Shift0-Map). § << (1-154(9) 0§ —£1 1[S]- (155 6 5.

~ (ShiftS-Map). 170§ <5 (1[1"] - 15%(M) 0 § £ 1[17 0 5] (154 6 ).




— (Lambda-Clos). AM[1-((So 15uelO) o (1-(To Tsuc(o))))] ‘i

+
(AM)[S][T] = AM[L- (S 0T) 0 154(O)].
If we consider (Beta), then we have additionally the following critical pair
with (App):

At

MI[N[S] - S] <“— (AM N)[S] Aet MIN[S] - ((S 0 154®) o (N - 1°))]

The following lemma proves that these critical pairs are joinable on the set
of expressions that contain meta-variables of terms, but no meta-variables of
substitutions or naturals, i.e. on semi-open expressions. Due to space limitation,
we only sketch the proof of the main properties. For detailed proofs, see the
extended version of this paper [28].

Proposition 2. The critical pairs of Az are L-joinable on semi-open expres-
S50MS.

Proof. For any any critical pair we reduce substitutions to £-normal forms. Next,
we proceed by structural induction on £-normal substitutions. O

In the general case, local ground confluence cannot be mechanically verified
[15]. However, the Critical Pair’s lemma [13], i.e. a rewrite system is confluent
if its critical pairs are joinable, holds also for ground expressions (cf. [15]): a
rewrite system is ground confluent if its critical pairs are ground joinable. The
Critical Pair’s Lemma is not true for general many-sorted systems, but in [33]
it has been proved that it holds if for every rule I —— r, the sort of [ and the
sort of r are the same.

Proposition 3. £ is locally confluent on semi-open expressions.

Proof. Notice that the Ag-calculus has three sorts of expressions: Naturals, Sub-
stitutions and Terms, but only meta-variables of terms are admitted. We must
extend the Critical Pair’s lemma to semi-open expressions. We check that £ is
a sort compatible system, i.e. terms reduce to terms and substitutions reduce
to substitutions. Now, the proof follows straightforwardly the proofs in [33, 15].
Notice that if two expressions are joinable, then they are in particular joinable
in semi-open expressions. Hence, it suffices to concentrate on those critical pairs
that are not joinable on open terms, and we conclude with Proposition 2. O

Theorem 4. L is confluent on semi-open expressions.

Proof. By Proposition 1, £ is terminating and by Proposition 3, £ is locally
confluent, so by Newman’s Lemma, £ is confluent. O

Corollary 5. L-normal forms of semi-open exrpressions always exist, and they
are unique. We denote by x|, the L-normal form of x.

Remark: The non-linearity of Az due to (ShiftS) is only apparent since the term
with a double occurrence in this rule can be considered as a constant in the set
of semi-open expressions. In particular, there are not reduction rules for natural
numbers.



3 Confluence

An useful technique to prove confluence in calculi of explicit substitutions is the
interpretation method [11, 17]. Although the interpretation method can be used
to prove confluence on terms with meta-variables (cf. [32]), we prefer to use a
technique that was coined in [34]: the Yokouchi-Hikita’s Lemma. This lemma
seems to be suitable for left-linear calculi of explicit substitutions [3, 31, 25].

Lemma 6 Yokouchi-Hikita’s Lemma. Let R and S be two relations defined
on a set X such that: 1. R is confluent and terminating, 2. S is strongly confluent

. . ) R
and 3. S and R commute in the following way, for any z,y,z € X, if xt — y
by gt o

s ) R*SR .
and © — z, then there exists w € X such that y —— w and z — w, i.e.
the following diagram holds:

VNZ

R*SR* "«  » R*
w

Then the relation R*SR* is confluent.
Proof. See [3]. |

We take the set of semi-open expressions as X, £ as R and B as S, where
By is the parallelization of (Beta) defined by:

M — N

M Ny M N S2 T (o)
MN—MN | M[S] — N[ I

S — 5 T —T
SoT — ST’

M — N S — T

TSN (Consy))

(Compy)

M — M’ N — N’

(T N) — IV ] o)

Proposition 7. On semi-open expressions, L and B satisfy the conditions of
Lemma 6. Therefore, L* B L* is confluent.

Proof. (1) By Proposition 1 and Theorem 4, £ is terminating and confluent on
semi-open expressions. (2) Bj is strongly confluent, since (Beta) by itself is a
left linear system with no critical pairs (cf. [13]). (3) Assume that an arbitrary



expression x reduces in one L-step to y, and in one Bj-step to z. We prove, by
induction on the depth of the L-redex reduced in z, that there exists w such

L*B)L c* .
that y w and z — w. At the base case z is a L-redex:

— (App). There are two cases:

o o= (M N)[s] 222N (aggs | VISI) = v and (4 NS ﬂ»
(M’ N')[S'] = =, with M —2'+ M’ N -2 N and 5 ZUs s7. By
definition of By, (M[S] N[S]) —— (M'[S'] N'[S']) = w. But also,
(M' NS L"i (M[S'] N'[S']) = w.

o o= (M N)[s] AR (AIS] NS = y and (AM N)[s] 1
M[N"-19][8"] = =, with M —'e M', N —2Ls N and § —'+ §'. Let

S’ the L-normal form of S' (Corollary 5). Then, y = (()\M)[S] N[S)

AR (ML (801540 N[s]) -

M'[L-(S oTS“C )][N’[S”] 19] £, M'[N'[S"] - §']. But also,

M'[N"-1°][9"] N Vi [N [S”] S”] This case is the only interesting one.

- (Lambda). @ = (AM)[S _(Lambda) | ML (50 15uel0 )] — yand z =

(AM)[S] — (AM")[S"] = =, Wlth M —% M and § —+ §'. By defini-
tion of By, AM|1 - (S0 15w©)] —L XM'[1-(S" 0 15%(9)] = w. But also,
s 2Ry (570 15 0))] = .

— The other cases are similar to the previous one.

At the induction step we solve with the induction hypothesis. O

Theorem 8 Confluence. A is confluent on semi-open expressions.

Proof. Notice that A\ C L*B)L* C At If z el y and x el z, then by
(£"B) L) (£"B) L")

Pr0p051t10n 7, there exists w such that y ———— w and z w. So,
b Ac*
Y Qe w and z =5 w. O

4 The simply-typed version

We consider a simple type theory, where types are generated from a set of basic
types a,b, ... and the arrow (—) type constructor. The simple type system we
propose is inspired in that of Ao [1].

Like the simply-typed A-calculus in de Bruijn’s notation, typing contexts
(of free variables) are structured as lists of types. The grammar of types and
contexts is:

Types A/B == a,b,... |A— B
Contexts I' = nil | A.



Typed terms differ from untyped ones only in abstraction expressions. We
prefer a Church style notation where types of binder variables appear explicitly
in the syntax.

Terms M,N == ... |Aa.M| ...

The Az-calculus is modified according to this new syntax of abstractions. How-
ever, it is not difficult to see that properties of Section 2 and 3 are preserved.
Typing assertions have one of the following forms:

— ' M : A, the term M has type A in the context I'.
— I'F S A, the substitution S has type A in the context I

AI'FM:B

Var) TF .0 A=

ATTF 14 (Abs)

I'-M:A—=B I'EN:A I'-S5>-A AFM:A

TF(IN): B App) = gsrra — (Clos)
TE{"s A .
Id Shift
s Y AT F ey 4 Oni)

IS A A’I—TDA(Com) I'-M:A T'FS»>A
TFToSo A P TFM-SoAA

(Cons)

Each meta-variable is typed in a unique context by a unique type (c.f. [4, 22]):

TX F X Ay Metax)

Ezample 1.
1. This is a type derivation of A.nil - Ag.(X 1[15“(®)]): B — C.

Anil 1% > Anil (1d) Shif
S ue(0) - (Shift)
A B.Anmlt 17 > A.nil AnmlF1: A
BAmIF X A= ¢ Metax) BAnl F [T
B.AnilF (X 1170 C
Anil F Ap. (X 1[15“O)]): B > C

(Var)
(Clos)

(Abs)

2. The term (Ag.X X) is not well-typed in any context. Notice that in the
following derivation:

Al'FX: A
I'FX3. X:A— A I'-X:A
I'F(AaXX):A—- A

the meta-variable X must be typed in two different contexts: A.I" and I.

(Abs)

(Appl)



3. Let X be a meta-variable such that I' - X : A. In this example, we take
the index 2 as a notation for l[TS“C(O)]. We have the valid typing judgment:
I'(Aa.Ap.2 X): B — A. We obtain by Az-reduction:

(Beta)

(Aa.Ap.2 X) (Ag.2)[X - 1°] R A X[]50e(0)]

Also, we can verify that I' F Ag. X[15%(®)] . B — A,

Notice that the type system is syntax directed, i.e. there is one rule for each
constructor of terms and substitutions. Using this fact, we can prove easily that
for a given context, the type of an expression is unique (type uniqueness’ lemma).

Lemma9 Type Uniqueness.

1. If Fll_M!Al andl—'zl—M:A2, th@’ﬂAl:AQ.
2. If Fll_Sl>Al and F2|_SI>A2, th@TLA1=A2.

Proof. We proceed by simultaneous structural induction on M and S. O

Example 1(3) suggests that typing is preserved under Ag-reductions. This
property is known as subject reduction.

Theorem 10 Subject Reduction. Let x and y be such that x e y, then

—ifxisatermand 'z : A, then 'y : A, and
— if x is a substitution and I' - x> A, then I'Fy > A.

. . . . A
Proof. We show that typing is preserved for one-step reductions (i.e. —= ), and

o s . . s . Ac” A
then it is also for its reflexive and transitive closure (i.e. —= ). Let z —— y be

a one-step reduction, we proceed by induction on the depth of the redex reduced
in z. At the initial case x is reduced at the top level, and we prove that every rule
preserves typing. At the induction step we resolve with induction hypothesis. O

In the Az-system, just as in Ao, instantiation of meta-variables and typ-
ing commute. This property guarantees the soundness of instantiation of meta-
variables in the unification algorithm [4, 5, 19], or in the refinements steps of
incomplete proofs [26].

Lemma 11 Instantiation Soundness. Let N be a term such that
I's B N : Ax, where I'x and A, are respectively the unique contexrt and unique
type of a meta-variable X. Then,

1. if A M:B, then AF M{X — N} : B, and
2. if AR S A’ then AF S{X — N}> A,

where x{X +— N} is a notation for the remplacement of meta-variable X by N
in the expression x without take care of possible capture of free variables.

Proof. We reason by induction on type derivation. O



5 Weak Normalization

Strong normalization on typed terms does not hold for .. In fact, Mellies shows
in [23] that his counter-example for preservation of strong normalization in the
Ao-calculus [24], can be adapted to systems without associativity of composition
(as Az), and even if we give priority to the rules (ShiftCons) and (VarCons).
In A-calculi of explicit substitutions that implement one-step semantic of 3-

reduction —i.e. if M, N are pure terms® and M . N, then M M M’
where N is the substitution-normal form of M'— as Ao, Ay and Az, weak normal-
ization on typed pure terms follows directly from strong normalization of typed
A-calculus. When we consider semi-open expressions, it arises an additional diffi-
culty: the presence of meta-variables and substitutions on normal forms. Notice
that the set of normal forms of semi-open expressions is not include in the set
of pure terms, e.g. the term X[TSM(O)] is a Ag-normal form, but it is not pure.

For the simply-typed version of Ao (with meta-variables), Goubault-Larreq
[10] proposes a clever translation from Aco-terms into a family of A-terms. In
this approach, weak normalization is deduced from strong normalization of the
simply-typed A-calculus. That proof is adapted to a second-order type system
without dependent types in [9].

In this section, we prove that A; is weakly normalizing on typed expres-
sions. In particular, we show that the reduction of (Beta) followed by a L£-
normalization is strongly normalizing on typed expressions. The proof we pro-
vide can be adapted to Ao in a straightforward way. This gives an alternative
proof to that developed by Goubault-Larreq. Our proof is based on that pro-
posed by Geuvers for the Calculus of Construction [7]. The technique that we
use is extended to a dependent type system with explicit substitutions in [27].

The general idea of the proof is to give an interpretation for each type into a
set of terms satisfying certain closure properties (these sets are called saturated
sets). Terms are also interpreted by functions called wvaluations. In our proof,
valuations are just particular explicit substitutions. We prove that if M is a
L-normal form and I' H M : A, then for any valuation S of M, the substitu-
tion normal form of M[S], i.e. (M[S])]., is included in the interpretation of
A, denoted [A]. The identity substitution is a valuation of any term, thus, in
particular, (M[1°])|, = M € [A]. The closure properties of [A] are sufficient
to conclude that M is weakly normalizing.

We define N F; as the set that contains all the £-normal forms of semi-open
expressions.

Definition 12. Let =,y € NF., we say that = B-converts to y, noted by
(Beta)

:z:ﬂ»y, if and only if = wand y =w|,.
We denote by SN the set of Bc-strongly normalizing expressions of N F .

Definition 13. Let M be in NF ., M is neutral if it does not have the form
Aa.N. The set of neutral terms is denoted by N7 .

3 A pure term is a ground term which does not contain substitutions.



Definition 14. A set of terms A C N F. is saturated if

1. AC SN.

2. If M € Aand M 25 M’ then M’ € A.
3. If M € NT, and whenever we reduce a (.-redex of M we obtain a term
M' € A, then M € A.

The set of saturated sets is denoted by SAT.

From Def. 14(3):

Remark 15. Let M € N'T such that M is a 3;-normal form. For any A € SAT,
M e A.

Lemmal1l6. SN € SAT.

Proof. We verify easily the following conditions.

1. SN CSN.

2. If M € SN and M 2+ M, then M’ € SN
3. If M € NT, and whenever we reduce a (.-redex of M we obtain a term
M' € SN, then M € SN.
O

Definition 17. Let A, A" € SAT, we define the set
Ao A ={MeNF,|VNeA: (MN)eA)}

Lemma 18. SAT is closed under function spaces, i.e. if A,A' € SAT, then
A— A € SAT.

Proof. We show:

1. A — A' C SN.
Let M € A — A, by Def. 17 and Def. 14(1), (M N) € A" C SN for all
N € A. Thus, M € SN.

2. HMeA— A and M 250 M/, then M’ € A — A'.
Let N € A, we show that (M' N) € A’. By hypothesis, (M N) LN (M’ N),
and (M N) € A'. Thus, by Def. 14(2), (M' N) € A'.

3. If M € NT, and whenever we reduce a (.-redex of M we obtain a term
M eA— A, then MeA— A

Let N € A, we show that (M N) € A'. Since (M N) € NT, then by

Def. 14(3), it suffices to prove that if (M N) LN M", then M" € A’. We

have N € A C SN, so we can reason by induction on v(N)%. In one step
(M N) Bc-reduces to:

Y “If z is strongly normalizing, v(z) is a number which bounds the length of every
normalization sequence beginning with z” [8].



— (M N), with M 25+ /. By hypothesis, M’ € A — A" and N € A,
thus (M' N) € A'.
— (M N'), with N e, N By Def. 14(2), N' € A, and v(N') < v(N), so
by induction hypothesis, (M N') € A'.
— There is no other possibility since M € N'T.
O

Definition 19. The type interpretation function is defined inductively on types

as follows:
I = SN if ¢ is a basic type
[A— B] [A] — [B]

Remark 20. By Lemma 18, for any type A, [A] € SAT.
Lemma21. Let M,S € NF, for any substitution T

wwawmmuwﬁwwmm
2. if § L5 87 then (SoT)| . v (ST,

Proof. We reason by simultaneous structural induction on M and S. a0

Corollary 22. Let M,S € NF ., for any substitution T

1. if (M[T))|, € SN, then M € SN, and
2. if (SoT)|, € SN, then S € SN

Lemma23. Let M € NF., if for all N € [A], (M[N -1°])|. € [B], then
AaM e [A] — [B].

Proof. Let N € [A], we show that (A4.M N) € [B]. Since (Asx.M N) € NT,

it suffices to prove that if (Aq.M N) e, M", then M" € [B]. We have
(M[N -1°)1. € [B] € SN, so by Corollary 22, M € SN; and by hypothesis,
N € [A] € SN. Thus, we can reason by induction on v(M) + v(N). In one step
(Aa.M N) Br-reduces to:

- (MIN 17Dl By bypothesis, (MIN - ])Lc € [5].
(A’ N), with M Per M'. By Lemma 21, (M[N - 1°))] . -2~
(M'[N -1°])] .. Since, (M[N - 1°])| . € [B], we have by Def. 14(2),
(M'[N - TO])lL € [B]. But also, v(M'") < v(M), so by induction hypothesis,
(Aa.M" N) € [B].
— (Aa.M N'), with N — N’. By Def. 14(2), N’ € [A], so by hypothesis,
(MIN"-1Dl. [[B]] But also, v(N') < v(N), so by induction hypothesis,
(Aa.M N') € [[B]]

O

Lemma 24. For any A € SAT, substitution S € SN, and meta-variable X,
(X[S]Le € A,



Proof. Let M = (X[S])l ., we reason by induction on v(S). M is neutral, then
by Def. 14(3), it suffices to consider the reductions of M.

VLS By Remark 15, X € A.
N LN X|[S'], with S Ny By hypothesis, S" € SN and v(S') < v(S5),
so by induction hypothesis, (X[S'])]|, = X[5'] € A.

In every case, M [B;-reduces into terms in A, thus by Def. 14(3), (X[S])|. € A.
O

Definition 25. The valuations of I', noted by [I'], is a set of substitutions in
N F defined inductively on I" as follows:

[nel] = {1™ | for any natural n}
[A.I"] [ndJU{M-SeNF.|Mel[A],Se[l']}

Notice that if M € [A] and S € [I'], then M - S is not necessarily in
[A.I'] (since M - S may not be in N F ). However, we verify easily the following

property.
Remark 26. If M € [A] and S € [I'], then (M - S)|, € [A.I].
Lemma 27. For any I', [I'] C SN

Proof. We prove by structural induction on S that if S € [I'], then S € SN.

— S =1". In this case S is a B¢-normal form, then the conclusion is trivial.

— S =M-T. By Def.25, ' = AI", T € [I"] and M € [A] C SN. By
induction hypothesis, T' € SN'. We prove by induction on v(M) + v(T') that
M - T € SN (notice that M - T € NF.).

Definition 28. Let M, S € N F ., we define

1. I" satisfies that M is of type A, noted by I' = M : A, if and only if
(M[T))], € [A] for any T € [IT7].

2. I satisfies that S is of type A, noted by I' = S > A, if and only if (SoT)|, €
[4] for any T € [I].

Proposition 29 Soundness of |=.

1L.IfI'EM:A, then'|=M : A,
2. IfI'FSb> A, then I' = S > A

Proof. By simultaneous induction on derivations I' - M : A and I' F S > A.
The last applied rule is:

— (Var). In this case, M =1 and I' = A.I". Let T € [I'], there are three cases:
o 7 =19 Therefore, (1[T])|, = 1. But also, 1 is a neutral 3z-normal form,
then by Remark 15, 1 € [A].



o T =15, Therefore, (1[T])], = 1[1%“(™]. But also, 1[1%“(")] is a
neutral B.-normal form, then by Remark 15, 1[15%(?)] € [A].

e T = M'- 5" Therefore, (1[T])], = M'. By Def. 25 and hypothesis
I'= A.I"", we have that M € [A].

— (Clos). In this case M = M'[S'], 'F S> A, and A+ M': A. We reason by
cases analysis on M’ and S'.

e M'=1and S =15, Let T € [I'], by induction hypothesis,
(1540 o T) | € [A]. Notice that (1[15%()][T])] . = (1[15*(") o T])]
= (1[(15“(™ o T)|])| . By induction hypothesis,

(L) o T) ]} L € [A], and thus, (1[5*V)[T]) ] € [4].

e M = X (X is a meta-variable). Let T € [I'], by induction hypoth-
esis, (8'oT)], € [A]. Notice that (X[S'|[T])|, = (X[S' T, =
(X[(S'oT)lc]) L. By induction hypothesis, (X((5'oT)le])l € [A],
and thus, (X[S'|[T])]. € [4].

— (Metax). In this case M = X (X is a meta-variable). Let T" € [I'], there
are two cases:

e T =19 Therefore, (X[T])|, = X. But also, X is a neutral 3,-normal
form, then by Remark 15, X € [A].

o T #1° Therefore, (X[T])|, = X[T]. By Lemma 27, T € SN, then by
Lemma 24, X[T] € [A].

— (Abs). In this case M = A, .My, Ay.'F My : By, and A = A; — B;. By
Def. 19, [4] = [A1 — Bi] = [A1] — [Bi]- Let T € [I'] and {(T) be a
notation for 1- (T o 15%¢(9)), We have (Aa,.M)[T])lz = Aa, .(MiNT)])] ..
By Lemma 23, it suffices to prove that for any N € [A44],

(M (T L[N -1°])1 . € [B1]- By hypothesis and Remark 26,
(N -T)|, € [A1.I'], then by induction hypothesis, (M[(N -T)| ])|, =
(ML LIN 1] € [Bi].

— (App). In this case M = (My N,), ' - M; : B — Aand I' - Ny : B.
Let T € [T], so we have, (M; N)[T])l, = (M[T])Le (VM[T)1,). By
induction hypothesis, (M1[T1)]. € [B — A] =[B] — [4] and (M1[T])]. €
[B]. Hence, ((M; N1)[T])l, € [4].

— (Id), (Shift). In this case S =1". We prove by structural induction on n and
T that if T € [I'] and I' F 1" > A, then (1" oT)|, € [A].

— (Couns). In thiscase S = M"-S" ' M': A", '+ S"> A" and A’. A" = A. Let
T € [T, so we have, (SoT)1; = (M[T])L¢ - (8'oT) L)l By induction
hypothesis, (M'[T]))| . € [A'] and (S'oT)|, € [A’]. From Remark 26 we
conclude that ((M'[T])]. (S oT)] )], € [4].

O

Theorem 30. Let M, S be expressions in N F ..

1.If T'FM:A, then M € SN.
2. If TS A, then S € SN.

Proof. By Def. 25, 1°¢ [I']. Hence,
1. By Proposition 29, (M[1°])] . = M € [A], and by Def. 14, [A] C SN



2. By Proposition 29, (S0 1%)] . = S € [4], and by Lemma 27, [A] C SN
O

Theorem31. If I'+ M : A and I' - S > A, then M and S are weakly
normalizing, and thus M and S have Az -normal forms.

Proof. Let N = M|, and T = S|, the subject reduction property (Theo-
rem 10) says that typing is preserved under reductions, hence I' F N : A and
I' - T > A. Therefore, by Theorem 30, N and T are both in SA/. Finally, remark
that a B;-normal form in N'F; is a Az-normal form too. a

6 Conclusions

We have proposed a variant of Ao, namely A-. This calculus enjoys the same
general properties of Ao:

— a simple and finitary first-order rewrite system,

— confluent on terms with meta-variables,

— weakly terminating on typed terms and

— with composition of substitutions and simultaneous substitutions.

However, in contrast to Ao, Az does not have the (SCons)-rule and so, it is
left-linear in the sort of terms and substitutions.

Although A was designed to allow meta-variables, it happens to be useful
in the same framework where Ao is. In particular both calculi share the same
description of normal forms. For example, the higher-order unification algorithm
via explicit substitutions proposed in [4] can be expressed in A, almost without
modifications. Moreover, since Az does not have the surjective pairing rule, it
is useful for applications where this feature of Ao pose technical problems, for
instance higher-order equational unification via explicit substitutions [19], or
dependent type systems [27].

Another left-linear variant of Ao is the Ay-calculus [3]. The system Ay is fully
confluent on open terms, not only with meta-variables of terms but also with
meta-variables of substitutions. However, A4 is incompatible with the extensional
rule () due to the fact that substitutions ¢d and 1-T are not Ay-convertible. A key
point in A, is the preservation of this extensional equivalence. The extensional
version of Ag-calculus is confluent on ground terms as shown in [18], and we
conjecture that it is also on semi-open expressions.

The Az-calculus is extended to dependent types in [27] and work is in progress
to use this calculus in a formulation of the Calculus of Inductive Constructions
with explicit substitutions and open expressions.
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